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This paper describes a highly robust and efficient parallel computing method for the transient simulation of low-frequency 

electromagnetics. In this method, time subdivision is introduced to control the memory usage and nonlinear convergence and a block 

forward substitution method is applied to solve the formulated block matrix for each subdivision. Application examples are presented 

to demonstrate the effectiveness of this method.  
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I. INTRODUCTION 

HE transient simulation of low-frequency electromagnetics 

with non-linear materials and permanent magnets usually 

is time-consuming since it requires 
et NN  number of matrix 

solutions, where tN   is the number of time steps and eN  is 

the average number of nonlinear iterations [1][2][3][4]. 

Provided that an algorithm (or method) can be made parallel, 

parallel computing can cut down simulation time for a 

nonlinear transient problem. For example, parallel computing 

can be applied to the matrix assembling and matrix solving at 

each time step [5]. However, it is not always possible to make 

full use of all the parallel cores because of limited parallel 

scalability. In order to gain better parallel scalability, an 

approach based on an iterative solver is proposed in [6], but it 

is not very robust for real engineering applications because the 

iterative solver may fail to converge for a given accuracy. 

Based on a block direct solver, we proposed a highly robust 

and scalable parallel computing method, called the time 

decomposition method (TDM) for general transient simulation 

of low-frequency electromagnetics [7]. In this paper, we will 

discuss this scheme extensively, and demonstrate its 

effectiveness by presenting several numerical examples. 

II. TIME DECOMPOSITION METHOD   

     The finite element method discretization of nonlinear eddy 

current problems produces a semi-discrete form as    
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Note that  txS ,  and  txT ,  are dependent on solution 

vector  tx  to reflect the non-linearity of the eddy current 

problems. Applying the backward Euler method and the 

Newton-Raphson method, we have the following linearized 

matrix equations, written in the form of block matrix  

[
 
 
 
 
𝐾1

𝑀1

0
⋮
0

0
𝐾2

𝑀2

⋮
0

⋯…
⋱
⋱
…

0
0
⋮

𝐾𝑛−1

𝑀𝑛−1

0
0
⋮
0
𝐾𝑛]

 
 
 
 

[
 
 
 
 

∆𝑥1

∆𝑥2

⋮
∆𝑥𝑛−1

∆𝑥𝑛 ]
 
 
 
 

=

[
 
 
 
 

𝑏1

𝑏2

⋮
𝑏𝑛−1

𝑏𝑛 ]
 
 
 
 

                      (2) 

with each submatrix corresponding to each time-step. 

In the above,  
iii TStK   and 

ii TM  are the Jacobian 

matrices, 
ix  is the increment of solution during nonlinear 

iterations, and ib is the residual during nonlinear iterations. 

Solving (2) using a general purpose direct matrix solver for 

real engineering problems is prohibitive.  In order to solve (2), 

we introduced TDM such that distributed parallel computing 

can be leveraged as described below.   

 

 

 
Fig. 1. Flowchart of time decomposition method.  

 

The basic procedure of the time decomposition (TDM) is 

presented in Fig. 1.  It can be implemented based on message 

passing interface (MPI). Depending on the number of 

available MPI processes and physical memory, divide the 

entire nonlinear transient simulation into several sub-divisions 

along the time-axis such that each MPI process handles only 

the computation of one time-step. The communication 

between different time-steps is through MPI functions. For 

each subdivision, one needs to solve a portion of the block 

matrix (2), i.e.,  
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Since (3) is a lower block triangular matrix, the most efficient 

solver is a block direct solver as presented in Fig. 2. 

T 
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 After solving one subdivision, use the solution of the final 

time step of this subdivision as the initial conditions to solve 

the next subdivision. 

 

 
Fig. 2. Direct block triangular matrix solver. 

III. APPLICATION EXAMPLES  

The proposed TDM has been applied to the transient 

simulations of different types of electrical machines, 

transformers and other magnetic devices.  

A. Permanent magnet motor 

Fig. 3 shows a permanent magnet motor. The speed is 2000 

RPM and driven frequency is 200 Hz. The total number of 

time steps is 256.  The number of mesh elements is 887275. 

Table I gives the parallel efficiency. The speedup is calculated 

against the sequential case without distributed parallel 

computing. In table I, the speedup is 21.7 for 256 MPI 

processes.     

B. Double cage induction motor 

Fig. 4 shows an 8-poles double cage induction motor. The slip 

is 0.0334. The speed is 724.979 RPM and driven frequency is 

50 Hz. The total number of time steps is 256.  The number of 

mesh elements is 480942. Table II presents the parallel 

efficiency. In table II, the speedup is 26.7 for 256 MPI 

processes. 

 

 

 

 
 

Fig. 3. Permanent Magnet Motor. 

 
Fig. 4. Double cage induction motor. 

 
TABLE I 

PERFORMANCE OF TDM FOR PERMANENT MAGNET MOTOR 

 

Number of MPI  

processes 
Number of 

subdivisions 

Simulation time 

(hours:minutes:seconds) 

Speedup  

 

1 256 (49:12:06) 1 

2 128 (34:57:25) 1.41 

4 64 (19:37:02) 2.5 

8 32 (11:37:11) 4.23 

16 16 (7:42:48) 6.38 

32 8 (4:47:38) 10.3 

64 4 (3:26:35) 14.3 

128 2 (2:50:49) 17.3 

256 1 (2:16:18) 21.7 

 

TABLE II 

PERFORMANCE OF TDM FOR DOUBLE CAGE INDUCTION MOTOR 

 

Number of MPI  

processes 
Number of 

subdivisions 

Simulation time 

(hours:minutes:seconds) 

Speedup  

 

1 256 (104:36:21) 1 

2 128 (166:28:46) 0.63 

4 64 (90:52:05) 1.15 

8 32 (47:36:23) 2.20 

16 16 (29:37:52) 3.53 

32 8 (16:17:27) 6.42 

64 4 (9:08:58) 11.4 

128 2 (6:22:14) 16.4 

256 1 (3:55:25) 26.7 
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